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Abstract

On the basis of our previous papers, the redistribution of radiative energy in the case of isotropic scattering is
investigated and the radiative transfer coefficient (RTC) under specular reflection in an absorbing, emitting and isotropic
scattering parallel slab is derived. Considering both multi-reflection and multi-scattering in the derivation, the RTC can
accommodate various boundary conditions under specular reflection. By accumulating the RTC for specular reflection
boundary and that for diffuse reflection boundary linearly, the RTC are calculated. The validity and high precision of
the formula for the RTC are confirmed by comparing with references. The effects of single-scattering albedo w, Planck
number Np and refractive index of STM n,, on the transient coupled heat transfer in a one-dimensional isotropic
scattering medium are reviewed for: (a) two semi-transparent boundaries; and (b) one semi-transparent boundary and
one opaque boundary. The presented calculation and formula for the redistribution of the scattering energy can also be
applied to other radiative calculations, such as total radiative exchange area or total radiative transfer coefficient in
multi-dimensional isotropic scattering media. © 1999 Elsevier Science Ltd. All rights reserved.

Nomenclature LSS 4 |LSV;]w | ViV;] . radiative heat transfer
Agr, :,(AZA 1,,(T) di/ﬁ I ,(T)dA, fractional spectral coefficient in isotropic scattering media relative to the
emissive power of spectral band k at nodal temperature spectral band k(AZ;)

T; t physical time [s]

C unit heat capacity [J m > K] t*(L) =Fo(L) = At/(CL?), dimensionless time

h,, h, heat transfer coefficient at surfaces of S, and S,, t¥ steady-state dimensionless time

respectively [W m=2 K '] T, temperature of the node i [K]

L slab thickness [m] T, reference temperature [K]

Mg N Tefractive index of STM and reference, respect- T, initial temperature [K]

ively, relative to the spectral band k(A4,) V, volume relative to node i.

Np Planck number, Np = A./(4Lnc Ty

NB total number of spectral bands Greek symbols

NM total number of the nodes (control volumes) « absorption coefficient [m ']

4, ¢, q" heat fluxes of thermal conduction, convection 7 transmissivity of surfaces

heat transfer and radiative transfer, respectively [W m ] At, Ar* time interval and dimensionless time interval,
S_.,S.., black surfaces representing the surroundings respectively

(SiSis (Si¥ )i, (ViV)),  radiative heat transfer coeficient ¢ emissivity of surfaces

in non-scattering media relative to the spectral band n n=1l-w

k(AZ) 0 angle of reflection

0. critical angle of reflection
® dimensionless normalized temperature
(Tﬁ Trf])/(Trﬂi K‘f])

* Corresponding author. Kk extinction coefficient [m~']
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A wavelength [um]

J. phonic thermal conductivity [W m~' K ']

i = cos@, direction cosine

pd, ps diffuse and specular reflectivity components,
respectively, i = 1 or 2

o Stefan—Boltzmann constant

o, scattering coefficient [m ']

7,7, optical depth and optical thickness, respectively
®! radiative source term of the node i

w single-scattering albedo.

Subscripts

a absorbed fraction in the overall radiative heat transfer
coefficient

k relative to spectral band k.

s scattered quota in the overall radiative heat transfer
coefficient

1,2 refer to frontiers S, and S,, respectively

— o0, + 00 refer to frontiers S__ and S, .., respectively.

Superscripts

cd, cv, r, t refer to thermal conduction, convection,
radiation and total, respectively

d, s diffuse and specular reflection, respectively

d+s combined diffuse and specular reflection

m, m+1 time step.

1. Introduction

The combined radiation—conduction heat transfer is
apparent in various engineering applications for semi-
transparent materials (STM), such as the glass industry,
molten salt media, fibrous materials, infrared heating as
well as the utilization of solar energy, etc. Early studies
of this subject were reviewed in detail by Viskanta and
Anderson [1] and by Kunc et al. [2]. It has attracted
further research in recent years, as to the combined heat
transfer with multi-dimension [3-7], under transient state
[3-6, 8-14], or with refractive index greater than unity
[11, 15, 16], in a scattering medium [6, 7, 12, 14-16, 17—
28], as well as with various boundary conditions and
various radiative characteristics of the boundary [15-18,
20-24, 26].

On solving one-dimensional radiative transfer in a scat-
tering medium, Machali [21] and Machali and Madkour
[22] investigated the radiative transfer in a plane-parallel
slab of an absorbing, emitting and scattering medium
for combined diffuse and specular reflection boundaries.
Siegel [17, 18], Kudo [20] and Ganapol [23] investigated
the radiative transfer in a plane-parallel slab of an absorb-
ing, emitting and isotropic scattering medium for trans-
parent or semi-transparent boundaries. Lin and Tsai [24]
and Siewert [26] investigated the coupled radiation—con-
duction heat transfer in an absorbing, emitting and scat-
tering medium for combined diffuse and specular reflec-

tion boundaries. Spuckler and Siegel [15, 16] studied
the heat transfer in a composite layer medium, which is
composed of two layers of different isotropic scattering
STM, the refractive indexes of which are both greater
than unity. Recently studies of this subject have been
reviewed in detail by Siegel [29].

By employing the ray tracing method, the overall radi-
ative transfer coefficients (RTC) between two surface
elements, between a surface element and a control volume
or between two control volumes, in a one-dimensional
STM, were presented for three different boundary con-
ditions under specular reflection: (a) two opaque bound-
aries [10]; (b) two semi-transparent boundaries [11]; and
(c) a semi-transparent boundary S, and an opaque one
S, [30]. In these researches, however, the scattering effect
was neglected.

In this paper, the scattering effect, various kinds of
radiative characteristics of the boundaries, the spectral
effect and the effect of refractive index are considered
comprehensively.

2. Physical model and governing equation

The energy equation for transient coupled heat transfer
of radiation—conduction in a homogeneous absorbing,
emitting and isotropic scattering medium slab is given by

pCp 0T/0t = —div(q™ +q") (1
where q%, q" are conductive and radiative flux densities.
One boundary surface S, of the slab is semi-transparent,
the other one S, is opaque. The slab thickness is L and
the slab is between two black surfaces (S_, and S, )
which indicate environments, whose temperatures are
Ts , and Ts, , respectively. The slab is divided into NM
control volumes (nodes) along its thickness, i/ indicates
one node (see Fig. 1). The time interval is from 7 (=mAr)
to t+ At (=[m+1]Af), so the implicit discrete equation
is obtained as

CAX(Ty ! = T7)/At = (225 (Tt =10 ) 22
(T2 =T ) Ax+ 0 (2)

where A, A.; are harmonic mean media thermal con-
ductivity at the interface ‘ie’ (between control volumes i
and i+ 1) and ‘iw’ (between control volumes i— 1 and i).

The extinction coefficient x, absorption coefficient o,
the scattering coefficient g, the refractive index n,, and
the surface reflectivity p are approximately simplified as
that in a series of rectangular spectral bands. The total
number of spectral bands is NB. BOP indicates the
‘opaque’ zone and BST indicates the ‘semi-transparent’
zone.

When k e BST, the boundary conditions at the semi-
transparent boundary S, and the opaque boundary S,
are as follows, respectively,

Boundary surface S, ¢* = ¢ (3a)
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Fig. 1. The infinite slab of STM modeling by the control volume method.
Table 1
Optical characteristics of the different glasses used
Spectrum A Spectrum B
k /. (pum) My Pk P2k Ky (mil) A (um) N i Prk = P2k K (mil)
1 0.5-2.7 1.5 0.04 0.97 10 0.5-1.0 1.50r 3.0 0.04 10
2 2.7-4.5 1.5 0.04 0.97 1000 1.0-2.7 1.50r 3.0 0.04 100
3 4.5-50 1.5 0.06 0.97 5000 2.7-4.3 1.50r 3.0 0.04 1000
4 4.3-10.3 1.50r3.0 0.06 10000
5 10.3-50.0 1.50r 3.0 0.15 10000
Boundary surface S, g5, +¢% = ¢5 s +q° (3b) NB
™ o S X (Twu—Ts)/Ax =0 Y. Mixbax
where ¢°* is the heat conduction flux density between the k=1
boundary node and the adjacent node. ¢ is the heat
Y ! 1 X (Air, TS — Az, TS, ) +h(Ts,—Ts) )

convection flux density between the boundary node and
the environment. ¢y, is the radiative flux density between
the boundary surface node S, and all internal nodes,
including the surrounding black surface S__ (because
in the semi-transparent zone, radiative ray can pass
through the boundary S,, transferring heat to S__
directly). ¢s,_.s,, Is the radiative flux density between S,
and the black surface S ., indicating the environment.
The discrete equation of equation (3b) is shown as
follows

o z nr%a,k {gz‘k[SPS—cr,]lsc,t—o(Ak,TsdT§77 _Ak,TS:Tf;Z)

keBST

NM
+ Z &[S Vil o (Ak,’l', T;l 7Ak,7's‘ Tf;:)}‘f' 2lenm
= ,

J

where Ay 7 = [u;, 1, (T}) dA/[§ I, ;(T}) d 2 is the fractional
spectral emissive power of the spectral band k at the
nodal temperature 7. If the coefficient of heat transfer 5,
(i=1,2) in equation (4) approaches infinity, the surface
temperature of the medium is equal to the surrounding
temperature T5 =Ts , Ts,=Ts, , equation (4) is
changed to the first kind of boundary condition.

When S, is the semi-transparent boundary and S, is
the opaque boundary, @} can be expressed as

Oi=0 Z ’737,/( {Sz.k[sz Viliio (Akﬁrsq T§2 —Ak,r, T?)
keBST :
NM
+ 2 WiVlhioAin T} = A T 1 <i< NM
=1

J
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+ViS Lo, T, *Ak,r,.Tf-')}- &)

If both boundaries are opaque or semi-transparent, the
radiative source term is given in refs. [10, 11].

3. Radiative transfer coefficient

In equations (4) and (5), [S;S]Ii, [S:V i and [V, V]
are RTC of surface to surface, surface to control volume
and control volume to control volume, respectively, in
an absorbing, emitting, isotropic scattering medium. In
the following, the RTC in an absorbing—emitting medium
is discussed first, then the RTC in an absorbing, emitting,
isotropic scattering medium under specular reflection is
deduced.

3.1. Absorbing—emitting media

Under specular reflection, because the incident angle
is equal to the reflecting angle, two rays with different
launching angles cannot intersect each other (Fig. 2). The
extinction function of a ray with an arbitrary launching
angle can be yielded by tracing this ray, then the spectral
coefficients (S, S));, (S,5)): and (S;S)); can be calculated
by integrating between 0 ~ /2. From the energy con-
servation equations

(S1Viio =(S18)kio—(S1Sit i (6)
ViViwo =(Sis18)heo
(58— (51 S Dbt (S Dher ()

So we have
ViV)iio = 2{[F,\.(K,\,x[+ 1) = FreGaexig jo1)

= Fp(rexi ) + Fr(x 1)1

F 05 [P (X 10 10X 1) — Fe (1 X1 2 H KXo ;)

—F (16X 00 F 10X j001) +F Fr (X0 16,0 )6

F [Fre(rerx;y F1cx ) — Fo (6 16X 1)
— F (15 Xip 10 16X ) + B (X 1 16X 0016

+ 05k [Fe (61X 1+ Tor +15X0 1) — Fie (16X

+ Tox +ka2._/) — (] Xip 1,1 + Tok

16X 1) FF (06X 11 Top KX )6

FE (X1, ) — B (i Xy ) — B (i )

+ F (kX4 ) 4 05 [ (60641 2

F 14X 1) = Fre(KeXig1 0 + KXo )

— F (16,5 H 15X 1) + Fr (X0 + K/;xz./)],llc

+ 05,k [F ey Xy ;) — Fro(le Xy KXy 1)
—Fe( X0+ KXy ) + B (60X 0 16060 4 1)]}%
+ P P u[Fr (s + T+ KX 1) — Fre (X
+Tor+ kaz._/) — F (ki 11T Tox

+ KX p41) + Fi(6eXi 1 +Tok+ka2,/)];ic} ®)
(S— e S2)kio = z(nm,k/nrf,k)zy1,k82.k[Fk(TOk)];L )

(S_ s Viwo = 20 p/Mugi) 1 [ Fic (X1 0) = F (16X 114 1)
+ 055 Fi (Tor +15X2,141) — P Fi (Tor + KkXZ,i)];]tC (10)

(S2Viwo = 2{[Fe(kxX2i11)

— Fy (i x2,) + Fi(Tor + 1601 )

— Fi(toe +wiXy oy )]+ [Fe(ex2,401)

— Fe(1ex2.,) + p1 i Fie(Tok + 160X 1)

_PSL/cF/c(TOk+ka1,i+1)];ltc}- 1D
In the above equations

[F ()] = j exp(— =) /[1 — pix exp(— 2t /)] du

(12a)

1

[Fe(2)],, = J peexp(—z/w)/[1 = piapir exp(—2t0c/w)] dpe

He
(12b)
T = K5d  pio = cos 0, 0, = sin™" (r/n,,5) (12¢)

where the superscript ‘s’ indicates specular reflection, and
the subscript ‘t—o’ indicates that one side is the semi-

Fig. 2. Two rays tracing with launching angle 6, and 6, under specular reflection.
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transparent boundary and the other side is the opaque
boundary, and

nrzﬂlc (S— 0 SZ)ls(,t—o = nlzn,ksz‘/c (Sl S— 0 )ls(,t—o

&2k (S2 Vo = (ViSkio
nf2f~/€(Sfoo Vi)lsr,t—o = n,zn,k(Vl-Sz);FO
ViV Do = ViV ko (13)

Subscript ‘0—0’ indicates that both sides are opaque
boundaries, the spectral RTC are given in ref. [10]. Sub-
script ‘t—t” indicates that both sides are semi-transparent
boundaries, the spectral RTC are given by [11]

(SiS/')ls(,o—os (Sl V/')lsc,n—o, (Vl V/')ls(,o—o
(Si = Sl,Sz Sj = SI’SZ)

(S8t SiVDiee ViV
(Si:S—w’S+OL Si:S*w’S*’”)‘

3.2. Absorbing—emitting—isotropic scattering media

In equations (8)—(11), (S;S)i, (S;V,)i and (V.V)); are
given without considering the effect of scattering, «, = .
For the scattering media, k, = o, 40, the radiative
energy represented by (S;S);, (S;V)i and (V;V)); will
redistribute. Suppose n = 1 —w, w is the single-scattering
albedo. In the following deduction, subscripts ‘0o—0’, ‘t—
o’, ‘t-t’, ‘k” and superscript ‘s’ will be omitted, because
the deduction and formula of RTC are independent on
the properties of boundaries and spectrum. Subscripts ‘a’
and ‘s’ indicate the absorbing and scattering, respectively.

3.2.1. First-order scattering
Notice there is only reflection at the boundary of the
scattering medium, which has been considered in the
above deduction. Considering the first-order scattering,
the corresponding quota of absorption will be (S.S)),
(V:S), n+(S;V;) and n+(V,;V), respectively; the remaining
part will be scattered.
[VfV/];St =ViVn [V:'S/];st =Vs)
[S: V/]el‘sl =(SiVn [S:'S']'lsl =(S:S)
[ViVi];St =ViVyo [S; ]]gt =(SiV)w
(S, S§;=8,,8, orS.S;=85_.,.5,
orS,S,=S_,,S..) (14)
where the superscript ‘1st’ indicates the first-order scat-
tering.

3.2.2. Second-order scattering
The RTC between two control volumes (i to j) can be
calculated as

VIV = ViV + Z o(ViVi,) n(Vi,V;)

=1

where the superscript 2nd’ indicates the second-order

scattering. On the right-hand-side of this expression, the
first item indicates the absorbed energy quota by element

J» which emits from element / and considering only the

first-order scattering. The second item indicates the
absorbed energy quota by element j after the first-order
scattering of the element /, (, = 1,2,..., NM), so after
second-order scattering, the RTC is given by

VSES = V7SI + Y (V) (S)o

=1

[SiV_/']gnd _ [S V lsl+ Z (S Vlj)(Vle)U\W]

=1

[S;:5,12 = [S,S)]a + Nid SV )WV,S)ow
L=1

V> Z](Vsz)(Vf Vyw?

SVE = X V0LV )or

(5,8,=5,,8, orS,S;=5_.,,5,
or S, S;=8_,.5..,). (15)

3.2.3. (n+ 1)th-order scattering

NM
[V V/]Zlh"‘w”’? . Z Vi Vlz)

L=1

: {'z UADE { NUAD

=1

[Vi V/_]Xi+ Dth _

=1

{NZM(W [Niw(vl V)

: [ AN V)ﬂ}}} (16a)

NM
[Vs](n+1)1h [VSlr‘nh_’_w Z (V[Vlz)
L =1

{Nf(% Vi): { Z Vv,

=1

NM
’ { Z Vl4VI |: Z (VI;VI
Is =

g =1

: [ NZW v, wa)(V/H,S,-)ﬂ}}} (16b)

[S V](n+l)lh [S V]”“‘—i—w”n z (S VIZ {z (Vl VI}

L=1

{ IR { NUADS [ PEUAAE
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' [ VZW (AN V,)}}}}} (16¢)

[S,-S/-];”Jrl)lh _ [SS nlh Z (S V{,

L=1

{ IRUAE { PIRUAD

=1 =1

{ PIRUADE [ Z Vi Vi)-

Is=1

: [ MZW v, me,)(V/,,HS,-)ﬂ}}} (16d)

NM
[ViV,']i)Hl)‘h — wn+l . z (ViVlz)

L=1

{ Y VL,V { Z VLV

=1

{ Z V,Vi) [ Z VL vi)-

: [ AN V,»)ﬂ}}} (16¢)

NM
[SV]0 00 = 1 Y (S7)
iV jls ,

L=1

{ZM AR {ZM AR

=1
I

{NZM V) [z V.V,

lg =1

. |:[ Z= I (V/” V’,,H)(Vlwl V/)j|:|}}} (16f)

3.2.4. Energy equilibrium during deduction

In the previous deduction, a basic condition has been
implied that the energy absorbed and scattered must be
of unit quantity. Such as | V;V; |, after the first-order
scattering, the scattering partis [V, V]I = (V,V,)o. After
the second-order scattering, the redlstribution of scat-
tering energy is as follows

VV)ol{l(V,S)+(V;S))]
+[VV )+ V)4 +V V)]l (0+n)}

the quota absorbed by boundaries S;, S, and all control
volumes is expressed as

(Vin)w{[(V/SI)+ (stz)]
+[(V_fV1)+(V/V2)+' ’ '+(V/VNM)] ’7}

The RTC in the absorbing—emitting medium has the
following expression

Z Si,k(SiSf)k"‘Zsf.k(Si V/')k = &S,
J

jinclui

Z Vi V/')k +Z( ViS/')k = 4K, V. (17)
jinclui j

So when calculating the RTC in the isotropic scattering
medium, the RTC in the absorbing—emitting medium
must be normalized first

(V[V/)Zk =V V_/)k/(4Kk V) (V:S/)Zk = (VIS/)/«/(4’€k V)
(SiV/');(k = (SiVj)k/(Ei.kSi) (SiS/);(k = (Si‘s_/)k/(gi.ksi) (18)

where the superscript ‘*’ indicates the normalized value.
The inverse operation is done after the calculation of
the (n+ 1)th-order scattering and absorbing. The energy
absorbed or scattered must be of unit quantity, otherwise,
the total energy will increase or decrease (depending upon
4.V, > 1, 0or <1).

3.2.5. Method and speed of calculation

However, equation (16) is difficult to apply in practical
calculations. As for | V;V; ] , considering second-order
scattering, three loops must be calculated: i = 1 > NM,
j=1->NM,l,=1—- NM. Lately, when one more scat-
tering is considered, one more loop will be calculated, so
after the nth scattering the calculating amount is
(NM+2)"*" (NM control volumes and two boundary
surface nodes). The calculation was started with a Pen-
tium 133, when NM = 4, eighth-order scattering takes
40 s, ninth-order scattering takes 40 x (NM+2) = 240 s,
tenth-order scattering takes 24 min. If the number of
control volumes are very large and single-scattering
albedo w is large as well, the calculating time will be
much longer. For example, when t, =5, NM = 20,
o = 0.90, after the 14th-order scattering, the sum of the
normalized RTC when i = 4 is as follows

NM

Z [V, V140 4 [V, 8,114 4 [V, 8,]140" = 0.933143674
=

NM

Z[V4V]“‘“‘* 0.066856326.

j=1

If the sum of the normalized RTC is desired to reach
0.999999994 (the sum of the scattering quota of the first
four control volumes <EPS0 = 3.0 x 10~%), 104th-order
scattering should be calculated. When these conditions do
not change except that w = 0.95, 148th-order scattering
should be calculated and when w = 0.98, 196th-order
scattering should be calculated. In order to calculate more
conveniently, equation (16a) is rewritten as

iy =

NM
[ViV/]Zlh"‘w”’?' Z (ViVI,,H)
/

1 =1

NM NM
: { z (V/,,+l V/,,) """ { Z (V/6 VIS)
=1

1,=1

{NZM ADE [ZM V)

=1
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[l

The calculation is started from the inside to the outside,
which is programed as a subroutine and the calculation
is performed in pairs (only three loops). So one more
scattering will only call two more subroutines, after nth-
order scattering, the amount of calculation is
2n(NM +2)*. For example, the calculation is started with
a Pentium 166, the optical thickness is 10, w = 0.8,
EPSO = 3.0 x 1078, the calculating time is shown in Table
2.

4. Radiative transfer and transient heat transfer for
opaque frontiers and specified boundary temperature

4.1. Transient coupled heat transfer for specified boundary
temperature

Frankel [27] studied the transient coupled radiative—
conductive heat transfer in a one-dimensional isotropic
scattering gray medium for opaque black frontiers and a
specified boundary temperature. The validity of this
paper is tested by this literature. Supposing the reference
temperature was 7T, = 1000 K, the initial temperature
T.(t =0) =0, T, = 0 and the dimensionless temperature
E=T/T The conduction—radiation number was
N = Axk/(4nioTY) = 0.1, the dimensionless time
E=(/JO*t=0.05, w=0.5 1y=1 and the dimen-
sionless spatial variable { = (7 —1,/2) — 1. The results are
shown in Tables 3 and 4. The results of ref. [27] are also
shown for comparison.

The dimensionless temperatures at the dimensionless

coordinates { = —0.5, 0, 0.5, respectively, are shown in
Table 3. The radiative flux densities at the dimensionless
coordinates { = — 1,0, 1, respectively, are shown in Table

4. By comparison, it is seen that the results in this paper
are consistent with those of Sutton, Barker, Tsai and
Frankel. Even if the girder is widely divided (control
volume NM =50), the time step is large
(At = 11.023705375 s, m = 200), the result is also sat-
isfactory. When NM =200 and Az = 0.440948215 s
(m = 5000), the results in this paper are consistent with
those of Frankel’s [27] eighth-order approximation.

Table 2
Calculating time after nth-order scattering

Number of nodes NM 100 200 300 400
Scattering number n 73 73 73 73
Calculating time (min) 2 15 52 123

Table 3

2973

Comparison of temperature results at three spatial locations

(£=005E=5,=0

Investigators [12]

Dimensionless temperature

(=-05(=0 (=05
Lii and Ozisik 0.4617  0.1474  0.0277
Sutton 0.4888  0.1778  0.0591
Barker and Sutton 0.4893  0.1775  0.0588
Tsai and Lin 0.4889  0.1773  0.0588
Frankel [27]
Fourth-order approximation 0.4996  0.1797  0.0504
Sixth-order approximation ~ 0.4888  0.1777  0.0584
Eighth-order approximation 0.4893  0.1773  0.0587

Present study
m* = 200, NM = 50
m = 1000, NM = 100
m = 5000, NM = 200

0.488407 0.177040 0.058844
0.489181 0.177265 0.058717
0.489345 0.177314 0.058690

*m is the number of steps for calculating up to non-dimensional
time ¢ =0.05, m =200, Ar=11.023705375 s, m = 1000,
At =2.204741075 s, m = 5000, Az = 0.440948215 s.

Table 4
Comparison of radiative heat flux results at three spatial
locations (¢ = 0.05, E, = &, = 0)

Dimensionless radiative heat
fluxes

Investigators [12]

(=—1 (=0 (=1

Lii and Ozisik 1.6436  1.2529  0.9746
Sutton 1.9304  1.3305 0.8332
Barker and Sutton 1.9300 1.3314  0.8335
Tsai and Lin 1.9328  1.3292  0.8321
Frankel [27]
Fourth-order approximation 1.9355 1.3025  0.8339
Sixth-order approximation 1.9348 1.3284  0.8317
Eighth-order approximation 1.9342 1.3289  0.8319

Present study
m = 200, NM = 50
m = 1000, NM = 100
m = 5000, NM = 200

1.935278 1.328469 0.831680
1.934418 1.328769 0.831858
1.934218 1.328834 0.831896

4.2. Radiative heat transfer for combined diffuse and
specular reflection boundaries

Formulas (8)—(11) are deduced for the case that both
boundaries are specular reflective. When two boundaries
S, and S, are diffuse and opaque, the RTC (or Radiative
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Extended Exchange Area) [2] in a non-scattering medium

with the consideration of multi-reflection, are calculated

as follows

(5152)2,070 = &34(5152)/[1 —Pl,kpz,k(slsz)ﬂ (20a)

(S V/')g‘ofn = [(510)k + P24 (5152)k (V;52)i]/
[1—pixp2x(s152)i]  (20b)

(S» V/')?:ofo = [(Szvf)k+Pl,k(5251)k(v_/51)k]/
[1—piap2i(s2s)]  (20c)

(Vi V/');\]"o—o = (UiU/)/c

4 Pra(s10)i L (510)k+ pau(5152)i (520 |
1 _kaPZ,k(SZSl)IE
P24 (520 [(520) 1+ P14 (5152)(510,)]
1 —Pl,kpz,k(é'zsl)f»
If considering the scattering effect, by substituting
equation (20) into equation (16) and adopting the layout
of equation (19), the RTC can be obtained.
In this paper, the RTC for combined diffuse and specu-
lar reflecting boundaries are calculated by accumulating
the RTC for the specular reflecting boundary (indicated
by superscript ‘s’) and that for the diffuse reflecting
boundary (indicated by superscript ‘d’), linearly
[EF/]?j:n = Prsﬂ X [EF/];;',O—U + (1 7Preﬂ)[F‘iF/']?:o—o
F;=S.V, F; = S/" V/) (21a)

where P, is the quota of the specular reflection
P = (1 +93)/ (05 +pi + p5 + p9). (21b)
Machali and Madkour [22] studied the radiative heat

transfer for combined diffuse and specular boundaries in
an absorbing, emitting and isotropic or linear anisotropic

+

(20d)

Table 5
Comparison of the dimensionless heat fluxes for slabs

scattering gray slab. The method of this paper is verified
by taking advantage of the case of an isotropic scattering
medium (see Table 1 in ref. [22]) with two opaque gray
boundaries, in which the heat conduction is neglected
and n,, = 1, o = 1, boundary temperatures (7, = 27T))
are given. So take 2. = 1x 107> [W m~' K~'] and let
EPSO = 3x 1078, EPS1 = 0.001 (required precision in
calculating the temperature field) in this paper. The num-
ber of control volumes NM is 300 per optical thickness
for 7, =0.01 ~0.1, is 100 per optical thickness for
7o = 0.5~ 2 and is 60 per optical thickness for 7, = 5.
The radiative heat flux density ¢" at boundary S, is
NM
¢ = f| Eutsviers s |

j=1
+[al[s1s2]s+;rs—az[szsl]z:v;]}. @)

The dimensionless radiative heat flux density ¢5, is as
follows (subscript ‘22’ indicates that the parameter is
defined according to ref. [22])

T =q /276, 0" T3 ]. (23)

The results, which are shown in Table 5, are consistent
with those in ref. [22].

5. Radiative transfer and coupled transient heat
transfer for semi-transparent frontiers

5.1. Calculated results compared with that from refs. [17,
18]

In outer space, the waste heat can only be lost from
the medium with liquid (or medium with particles) by

7o = 0.01 7o =0.1 70 =0.5 To=1 Ty =2 To=135
@) pi =0,p5+e =1.0,p3=02,p5=0,¢,=0.8
g =02 Ref. [22] 0.44559 0.43851 0.41229 0.38554 0.34261 0.25772
P.=0.38 Present study 0.445588 0.438534 0.412361 0.385597 0.342634 0.257729
e =07 Ref. [22] 0.39661 0.37798 0.31827 0.26854 0.20591 0.12165
P.a=0.6 Present study 0.396609 0.377999 0.318315 0.268569 0.205915 0.121657
g =1.0 Ref. [22] 0.37208 0.34928 0.28067 0.22788 0.16660 0.09254
P.=0 Present study 0.372077 0.349277 0.280673 0.227885 0.166598 0.092541
(b)p} =02,p5 =0,6 =08, p3 =0, pS+e, = 1.0
& =0.2 Ref. [22] 0.11140 0.10963 0.10307 0.09639 0.08565 0.06443
P..=0.28 Present study 0.111397 0.109634 0.103090 0.096399 0.085658 0.064432
& =0.7 Ref. [22] 0.34703 0.33073 0.27848 0.23497 0.18017 0.10645
P..=0.6 Present study 0.347033 0.330749 0.278525 0.234998 0.180175 0.106450
& =1.0 Ref. [22] 0.46509 0.43660 0.35084 0.28485 0.20824 0.11567
P.a=0 Present study 0.465096 0.436597 0.350841 0.284856 0.208248 0.115676
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means of radiation. The physical model can be simplified
as, the radiative heat transfer between a one-dimensional
isothermal absorbing—emitting—scattering gray medium
with semi-transparent frontiers and the circumstance
(Ts_ = Ts, ). Reference [17] adopted the numerical
solution of an integral equation, suppose n, = 1, the
dimensionless radiative heat flux 4}, is given as follows
(subscript ‘17’ indicates that the dimensionless radiative
heat flux is defined according to ref. [17])

R NM . 4
17 = Ny, ([ViS+w]1—tTi
=1

%&J&HQNU%HJ.@Q

In this paper, the number of control volumes NM is from
10-20 per optical thickness, the comparison between the
result of this paper and that of ref. [17] is shown in Table
6.

In the above calculation, if considering the cooling
process of the medium with a liquid droplet (or medium
with particles), this will be the transient combined radi-
ation—conduction heat transfer. We solved the following
problems to compare with ref. [18]:

(1) Since the conduction was neglected in ref. [18], there-
fore, let 2, = 1 x 107" [W m~" K '] in this paper.

(2) Since the reflectivities of both boundaries are zero
(p = 0), the calculation may be performed by con-
sidering either diffuse or specular reflection. The
medium is gray and n,, = 1.

(3) Convergence condition is |[{(Tyuy—T)/Ti}" "' —
{(TNM,‘z_ Tl)/Tl}ml < EPS2 =0.01.

(4) Emissivity of the medium is defined as
£ = q' (1, 1)/[6TE(1)] (where T,, is the integral mean
temperature).

Table 6

NM

¢umo=a¢{z

i=1
<(ViSy o Jedr T = [S. o VitAr, Té_x)} (25)

The comparison between this paper and ref. [18] is shown
in Table 7.

5.2. Transient coupled heat transfer in isotropic scattering
medium for semi-transparent frontiers

The optical properties of the absorbing—emitting—scat-
tering medium with both semi-transparent boundary sur-
faces are shown in Table 1 (Spectrum B). The thickness
of the slabis L = 0.5 cm, C = 688856.448 J K ~' m~?,
A = 0.0043053526 and 0.043053526 W m ' K !, respec-
tively (corresponding Np = 0.0005 and 0.005). Both
boundary surfaces S, and S, are of convection-radiation
boundary conditions. The initial temperature is
Ty=Tpn=1500 K, Ty =Ts =Tq=75 K and
the dimensionless normalized temperature  is
O =(T—T)/(Tix—T.1). NM = 100, the dimensionless
variable time step is employed in the calculation [9],
Ar* = 1 —exp(— B+ m), where B = 0.000223. The results
of considering the influence of the scattering albedo w,
the Planck number Np and the refractive index of STM
n,, on coupled radiative—conductive heat transfer, are
shown in Fig. 3(a)—(d).

6. Transient coupled heat transfer for one semi-
transparent boundary and one opaque frontier
6.1. Transient heat transfer in the mixed boundary con-

dition

The optical properties of the medium, which were given
in ref. [11] as ‘float’ glass are shown in Table 1 (Spectrum

Dimensionless radiative heat flux ', of one-dimensional isotropic scattering isothermal gray medium for semi-transparent frontiers

7, Ref. [17] Present study Ref. [17] Present study Ref. [17] Present study
o = 0.00 o =0.30 o = 0.60
0.5 0.557 NM =10 0.5567913  0.449 NM =10 0.4492462  0.303 NM =10 0.3031370
1 0.781 NM =20 0.7806161  0.667 NM =20 0.6668722  0.490 NM =20 0.4901975
5 0.998 NM =100 0.9982444  0.924 NM =100 0.9226018  0.798 NM =100 0.7977136
10 1.000 NM =200 0.9999929  0.933 NM =200 0.9256084  0.808 NM =200 0.8053395
o = 0.80 o = 0.90 o =0.95
0.5 0.172 NM =10 0.1724179  0.0926 NM =10 0.0925892  0.0481 NM =10 0.0480754
1 0.304 NM =20 0.3036279  0.173 NM =20 0.1725512  0.0926 NM =20 0.0926239
5 0.637 NM =100 0.6355296  0.470 NM =100 0.4703325  0.317 NM =100 0.3164436
10 0.659 NM =200 0.6576291  0.518 NM =200 0.5182605  0.389 NM =200 0.3894618
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Table 7

Emissivity of one-dimensional isotropic scattering gray media for semi-transparent frontiers & (EPS0O = 3.0E—08, EPS1 =

0.001, EPS2 = 0.01)

T Ref. [18] Present study Ref. [18] Present study Ref. [18] Present study
w =030 o = 0.60 o =0.80
1 0.662 NM =20 0.6622064  0.489 NM =20 0.4887345  0.304 NM =20 0.3033532
3 0.830 NM = 60 0.8295321 0.722 NM = 60 0.7222619  0.555 NM = 60 0.5548919
5 0.753 NM =100 0.7517080  0.696 NM =100 0.6954319  0.592 NM =100 0.5920237
10 0.544 NM =100 0.5444467  0.529 NM =100 0.5289561 0.496 NM =100 0.4958588
14 0.437 NM =140 0.4372308  0.430 NM =140 0.4301855  0.414 NM =140 0.4141381
NM =300 0.4365481 NM =300 0.4295252 NM =300 0.4135254
o =0.90 o =0.95 o =098
1 0.173 NM =20 0.1725083  0.093 NM =20 0.0926179  0.039 NM =20 0.0387639
3 0.379 NM = 60 0.3792496  0.232 NM = 60 0.2322984  0.107 NM = 60 0.1074556
5 0.456 NM =100 0.4563982  0.313 =100 0.3131194 0.161 NM =100 0.1613661
10 0.440 NM =200 0.4401863  0.360 NM =200 0.3602210  0.233 NM =200 0.2333974
14 0.385 NM =140 0.3852582  0.338 NM =140 0.3381247  0.248 NM =140 0.2475437

NM =300 0.3847264

NM =300 0.3377129

NM =300 0.2473206

A), the thickness of the slabis L = 10 cm, 4. = 0.8610705
W m' K-~! (corresponding to Np = 0.005),
C=861070.5J K~' m~>. The initial temperature is
Ty=1500 K, Ts, =T, =1500 K, Ts =T,y =750
K. S, is an opaque frontier and its temperature is given
by supposing that Bi,(x = L) = 00, s0 Ts, = T . S;is
a semi-transparent frontier with convection and radiation
boundary conditions, supposing that Bi,(x = 0) = 0.1.
NM =100, Ar* =1—exp(—B-m). The calculated
results of coupled heat transfer of radiation—conduction
are shown in Fig. 4(a)—(c). The results for two opaque
boundaries are shown in these figures as well for compari-
son, where the curve ‘o—o’ indicates two opaque bound-
aries, ‘t—0’ indicates one opaque boundary and one semi-
transparent boundary.

6.2. Transient transfer with imposed exchange boundary
conditions

The optical properties of the medium are shown in
Table 1 (Spectrum B), n,,, = 1.5. The thickness of the
slab is L=0.5 cm, the initial temperature is
Ty=Tp=1500 K, Ts =Ts =T5n=75 K,
Np(t* = 0) = 0.005 (corresponding to A, = 0.04305353
W m~! K "). Both boundary surfaces are of convection—
radiation boundary conditions and Bi(L/2) =
Bi,(L/2) = 0.05. Considering three different boundaries:
(a) opaque/opaque frontiers ‘o-o’; (b) semi-trans-
parent/opaque frontiers ‘t—o0’; and (c) semi-trans-
parent/semi-transparent frontiers ‘t—t’, the calculating
temperature profiles (w =0 and w = 0.9) in the scat-
tering medium slab are shown in Fig. 5(a)—(c), respect-

ively. The calculating parameters are as follows:
C =688856.48JK "'m3, NM = 100, the dimensionless
time step Ar*(L/2) = 0.0001 and dimensionless time
t*(L/2) = Fo(L/2) are 0.01, 0.05, 0.1, 0.2, respectively.

7. Result and discussion

On the basis of our previous papers (refs. [10, 11, 30]),
this paper investigates the redistribution of the radiative
energy in the case of isotropic scattering, and the RTC is
derived in an absorbing, emitting and isotropic scattering
parallel slab. Considering both multi-reflection and
multi-scattering in the derivation, the RTC accom-
modates various boundary conditions under specular
reflection: (a) both opaque boundaries; (b) one semi-
transparent and one opaque boundary; and (c) both
semi-transparent boundaries. The validity and high pre-
cision of the formula for the RTC are confirmed by
comparison with the calculated results in refs. [17, 18, 22,
217].

This paper deduces the RTC in a one-dimensional
absorbing, emitting and isotropic scattering slab with two
diffuse reflecting opaque boundaries. By accumulating
the RTC with the specular reflection boundary and the
RTC with the diffuse reflection boundary linearly, the
RTC in an absorbing, emitting and isotropic scattering
medium with combined specular and diffuse reflecting
boundaries is obtained.

The presented calculations and formulas for the redis-
tribution of the scattering energy can also be applied to
other radiative calculations. By use of this method, the
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Fig. 3. Diagram of reduced temperature vs. Fourier number for various Np, refractive index and single-scattering albedo
0.08610705, B = 2.23E—5, EPSO = 3.0E—8, EPS1 = 0.0002, EPS2 = 0.001, P = 1).
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Fig. 4. Temperature profiles for mixed conditions. Comparison for opaque/opaque and semi-transparent/opaque frontiers
(EPS0O = 3.0E—8, EPS1 = EPS2 = 0.0002).
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Fig. 5. Temperature profiles for heat exchange conditions, Np (t* = 0) = 0.005 and Bi(L/2) = 0.05. Comparison for opaque/opaque,
semi-transparent/semi-transparent and semi-transparent/opaque frontiers between w =0 and w = 0.9 (P, = 1,EPSO = 3.0E—8,

EPSI = EPS2 = = 0.0005).

total radiative exchange area or total radiative transfer
coefficient in a multi-dimensional non-scattering
medium, which are calculated by other methods, can be
developed in an isotropic scattering medium.
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